The Wisdom of Crowds with Informative Priors
نویسنده
چکیده
In some eyewitness situations, a group of individuals might have witnessed the same sequence of events. We consider the problem of aggregating eyewitness testimony, trying to reconstruct the true sequence of events as best as possible. We introduce a Bayesian model which incorporates individual differences in memory ability, as well as informative prior knowledge about event sequences, as measured in a separate experiment. We show how adding prior knowledge leads to improved model reconstructions, especially in small groups of error-prone individuals. This Bayesian aggregation model also leads to a “wisdom of crowds” effect, where the model's reconstruction is as good as some of the best individuals in the group.
منابع مشابه
Decision accuracy in complex environments is often maximized by small group sizes.
Individuals in groups, whether composed of humans or other animal species, often make important decisions collectively, including avoiding predators, selecting a direction in which to migrate and electing political leaders. Theoretical and empirical work suggests that collective decisions can be more accurate than individual decisions, a phenomenon known as the 'wisdom of crowds'. In these prev...
متن کاملBayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models
Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملModeling Wisdom of Crowds Using Latent Mixture of Discriminative Experts
In many computational linguistic scenarios, training labels are subjectives making it necessary to acquire the opinions of multiple annotators/experts, which is referred to as ”wisdom of crowds”. In this paper, we propose a new approach for modeling wisdom of crowds based on the Latent Mixture of Discriminative Experts (LMDE) model that can automatically learn the prototypical patterns and hidd...
متن کاملIntuitive Biases in Choice versus Estimation: Implications for the Wisdom of Crowds
Although researchers have documented many instances of crowd wisdom, it is important to know whether some kinds of judgments may lead the crowd astray, whether crowds’ judgments improve with feedback over time, and whether crowds’ judgments can be improved by changing the way judgments are elicited. We investigated these questions in a sports gambling context (predictions against point spreads)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010